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Abstract-The buckling of isotropic and composite cylinders due to induced moments was inves­
tigated. The cylinder wall may be of solid or of sandwich construction. Expressions were derived
for the critical buckling moment. Numerical examples for aluminum and glass--epoxy composite
cylinders are presented which show that induced moments are unlikely to result in buckling of
cylinders under conditions which may arise in practice..f) 1997 Elsevier Science Ltd.

I. INTRODUCTION

Numerous investigators have studied the buckling of isotropic and composite cylinders
subjected to axial loads, torsional loads, or external pressure. Relatively little attention
has been paid to the buckling of cylinders due to induced moments [Dorninger and
Rammerstorfer (1990); Kollar (1994)]. Induced moments may arise, for example when
there is a temperature difference across the wall of the cylinder (Fig. 1) or during filament
winding ofcomposite cylinders where the tension in the fibers creates stresses varying across
the wall of the cylinder. The question arises under what conditions, if any, do induced
moments cause buckling of the cylinder. This paper is addressed to this problem and
specifically examines the buckling of isotropic or orthotropic cylinders under induced
moments. Orthotropic cylinders are of interest because the walls of composite cylinders are
frequently orthotropic.

2. PROBLEM STATEMENT

We consider either an isotropic or an orthotropic cylinder of inner radius Ri, wall
thickness h and length L (Fig. 2). The wall of the cylinder may be solid or may be of
sandwich construction (Fig. 3), the latter consisting of two facesheets and a core (Fig. 3).
The cylinder is subjected to circumferential induced moments M owhich are constant in the
circumferential direction as well as along the length of the cylinder (Fig. 4). The problem
at hand is to determine the magnitude of the induced moment M o under which the cylinder
buckles.
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Fig. 1. Temperature distribution across the wall of the cylinder.
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Fig. 2. Geometry of the cylinder.
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Fig. 3. Build-up of the sandwich wall.

Fig. 4. Induced hoop moment in the wall of the cylinder.
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Fig. 5. Internal forces in the wall of the cylinder.

Due to the induced moment M o the cylinder may buckle into different shapes. Here
we consider only axisymmetric buckling along the length of the cylinder.

3. ANALYSIS

In the following the analysis is presented for an orthotropic sandwich cylinder (Fig.
2), with deformations of the cylinder wall due to transverse shear taken into account. The
results are then reduced to the special cases of solid (non-sandwich) orthotropic cylinders
and isotropic cylinders. The starting point of the analysis is the equilibrium equations. The
only nonzero forces and moments acting on a segment of the wall are the axial and
circumferential in plane forces N, and Ny, the transverse shear Qx and the moments M x and
M o (Figs 5a, b).

By neglecting higher-order terms [Timoshenko and Gere (1961), p. 452] radial and
axial force balances give (Fig. 5)

Moment equilibrium about the y axis gives

(
oM, )-QxRdOdx-M,RdO+ M,+ ax dx RdO-Mo dxet>dO = O.

(1)

(2)

(3)

In the above equation R is the radius of the center plane of the wall, dx is the length and
dO is the arc of the cylindrical segment under consideration (Fig. 5). et> is the rotation of the
cross-section.

The last term on the left-hand-side of eqn (3) is due to the fact that in the deformed
wall the induced moment M o has a component which creates a moment about the y axis
(Figs 6a, b). The magnitude of this moment is of the same order of magnitude as the
moments represented by the first, second and third terms in eqn (3). Note that for 'Y = 0
(i.e. there is no shear deformation present) this last term is equal to that given by Timo­
shenko and Gere (1961, p. 453): ModxowjoxdO. However, if both bending and shear
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Fig. 6. Bending moment about the y axis due to the change in geometry: (a) and (b) bending and
shear deformations, (c) shear deformation only.

deformations are present, ow/ox should be replaced by the rotation of the cross-section, ¢.
This is further illustrated in Fig. 6(c), where only shear deformation is present
(¢ = 0, ow/ox = () and the vector of moment, M o, remains vertical.

Equations (1)-(3) may be simplified to yield

oN,
-=0ox

(4)

(5)

(6)

The inplane strains Bn ey, the inplane shear strain {xY' the transverse shear strains {n {y and
the curvatures K x , K", K xy at the midplane of the cylinder-wall are

w
ey = R' (7)

{xy = 0,
ow

{x = ow - ¢, (y = 0 (8)

o¢
K x = - ox' K .. = 0, K xy = 0, (9)

u and ware axial and radial displacements and ¢ is rotation of the cross-section of the wall
(Fig. 6).

For an orthotropic cylinder with strains and curvatures given in eqns (7)-(9) the
constitutive equations are [Tsai and Hahn (1980)]

N x = A,ex + AxyB\

Ny = Axyex+ Ayey (10)
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(11)

where A and D are the inplane and flexural stiffness [Tsai and Hahn (1980), p. 225] and Sx
is the shear stiffness [Allen (1969), p. 17]. By combining eqns (4)-(11) and by taking into
account that there is no applied axial load (hence N, = 0), we obtain

1 ( A~,) a2
li' a¢,

- A,- -A.- IV-S,~ +S'-a = 0
R 2

, ox· -x

(12)

To proceed with the solution we approximate the radial displacement and the rotation of
the cross-section by the trigonometric functions

IV = wsin(~x), ¢ = cPcos(~x), where (13)

where W, ¢ and I, are unknown constants. These equations satisfy the conditions of hinged
boundaries [Allen (1969)] at x = 0 and x = L provided that the ratio LII, is a positive
integer. Substitution of eqn (13) into eqn (12) yields

-S,~

-SiX ], [~J = [~J
, 1

S,+D,~· - liMo

(14)

When the wall buckles Ii' and 1> are nonzero. Thus, when buckling occurs eqn (14) is only
satisfied when the determinant of the coefficient matrix is zero

Det

where

I - 2
A, +S,iX

R 2 -

-S,~

-S,iX

, I
S,+D,~·- liMo

= 0, (15)

Solution of eqn (15) yields

_ ( A~, )A,=Av 1- AA .
x y

(16)

(17)

which depends on the buckling length. We are interested in the smallest value of the induced
moment, M o, which causes buckling (critical buckling moment). Assuming that the buckling
length, IX' is much smaller than the length of the cylinder, L, the critical induced buckling
moment is achieved when the following condition is met
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oMf{
-- = 0, i.e.
oRa 2

Equation (18) gives

L. P. Kollar

o {(Ra2 I)-I }
--2 A- + -S +Dx Ra2

= O.
oRa I' xR

(18)

2 -( I I)Ra = AI' rrr;- - SR'
V ArD, x

(19)

Ra2 must be pOSitive. When Ra2 is positive SxR must be greater than
J ..IyDX (Sx R > ) ..I,D,) and the critical induced buckling moment becomes eqns (17) and
(19)

(20)

When SxR is equal or less than ) ..IyDX then Ra2 (which cannot be negative) is set equal to
zero to obtain the lowest value of the critical induced moment, M'O. The critical induced
moment becomes (eqn (17))

(21)

The critical induced moment given by eqn (21) represents pure shear buckling.

Solid wall cylinders
For a cylinder with solid wall the shear deformation may be neglected (Sx = (0) and

the critical induced moment becomes (eqn (20))

M'O = 2)..I,D, (orthotropic).

For an isotropic material we have [Timoshenko and Gere (1969)]

(22)

Eh
Ax = A,. = -1--

2
Axy = vAl'

-v
(23)

and the calculated critical induced moment becomes

Eh 2

Mer - (isotropic).
o - )3(1-v2 )

(24)

4. DISCUSSION

The analysis presented in this paper shows that, in principal, induced moments may
cause buckling of cylinders made of an isotropic or orthotropic material. The question
remains whether or not in practice such induced moments are sufficiently large so as to
result in buckling. To address this question, numerical examples were worked out. In the
examples aluminum and glass-epoxy cylinders are considered. The walls of the aluminum
cylinders are "solid", while the walls of the glass-epoxy cylinders are of either solid or
sandwich construction. The lay-up of the "solid" glass-epoxy composite wall is either
[± 4>20/010], or [± 4>20/90101. with the 00 direction being parallel to the cylinder axis (Fig. 2).
The lay-up of the facesheet of the sandwich construction is [± 85 10], The material properties
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Table I. Material properties for aluminum, for glass-epoxy and for the aluminum honeycomb core
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Young's modulus
Poisson's ratios
Thermal expansion coefficient

Material properties of aluminum
E = 73.0 GPa,
v = 0.33,
0( = 23.9 X 1O- 60 C.

Material properties of glass-epoxy

E, = 38.6 GPa,
E,. = 8.27 GPa,
G" = 4.14 MPa,
v" = 0.26.

0(, = 8.6 X 1O-60C,
0(, = 22.1 X 1O-6ccC.

Material properties of the aluminum honeycomb core
Shear moduli G" = G,.: = 138 MPa G" ~ 0,
In-plane Young's modulus E ~ O.

Stiffness parameters
longitudinal Young's modulus
transverse in-plane Young's modulus
shear moduli
Poisson's ratios

Thermal expansion coefficients
longitudinal
transverse

used in calculations for aluminum, glass--epoxy and the aluminum honeycomb core are
given in Table 1.

It is assumed that there is a AT temperature difference across the wall of the cylinder
(Fig. 1). Such temperature difference may arise, for example, if the cylinder contains a fluid
which is warmer than the ambient. We make the approximation that the temperature varies
linearly across the wall. In this case, for an isotropic or orthotropic cylinder the induced
moment is (Appendix)

(25)

where ax and ay are the coefficients of thermal expansion in the wall of the cylinder in the
axial and circumferential directions, respectively. By substituting eqn (25) into eqns (24),
(22) and (20)-(21) we obtain the following expressions for the critical temperature difference
ATcrit at which the cylinder bucklest
isotropic solid wall

CJ§4y' 3 1- v
t1.Tcnt =-- -1-'

a +v
(26)

orthotropic, solid wall

(27)

orthotropic, sandwich wall

(28a)

(28b)

The calculated critical temperature difference for a solid aluminum cylinder is (eqn (26»

t Note that temperature difference I'J.T induces bending moments not only in the hoop but also in the axial
direction. However, in the case of axisymmetric buckling shape, the axial bending moment does not influence
eqns (1)-(3) and eqns (20)-(24).
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Fig. 7. Critical temperature differences of glass-epoxy cylinders as a function of the winding angle,

¢. The transverse shear deformations were neglected.
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Fig. 8. Critical temperature differences of glass-epoxy sandwich cylinders as a function of the shear
modulus of the core. The realistic values of the shear modulus are above 100 MPa. The shear

stiffness of the sandwich, S, was calculated as follows: S, = G x 52.5 mm.

!J.TCrIl = 2.058 X 105 e, the critical temperature differences for glass-epoxy solid and sand­
wich cylinders are shown in Figs 7 and 8. As can be seen, unrealistic large temperature
differences (on the range of 105c C) would be needed to introduce buckling. Thus, it appears
that induced moments may cause bucking only in principal. Induced moments are most
unlikely to lead to bucking of cylinders made of "practical" materials.
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APPENDIX

Induced moments by linear change in temperature

An orthotropic shell is subjected to a change in temperature which varies linearly through the thickness (Fig.
1). The change in temperature on the innermost and outermost surfaces are denoted by ±f1T(2. The goal is to
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determine the induced bending moments in the shell (due to the change in temperature) assuming that the
curvatures remain unchanged.

The Cartesian coordinates x and y coincide with the axes of orthotropy. The temperature strains in the shell
are as follows

(AI)

where IXx and lXy are the coefficients of thermal expansion in the x and y direction, respectively, z is the distance
measured from the middle surface of the shell and h is the thickness of the shell. The linearly varying strains, e;
and er represent the following changes in curvatures.

(A2)

The total curvature is zero, hence the temperature strains (curvatures) are equal to the opposite of the mechanical
strains (curvatures). The induced moments are [Tsai and Hahn (1980), p. 225]

(A3)

Introducing eqn (A2) into eqn (A3), we obtain

(A4)

Equation (A4) is valid for a homogeneous, orthotropic material. For a layered structure the effective coefficient
of thermal expansion must be determined from the laminated plate theory [Tsai and Hahn (1980), p. 329].


